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Abstract. In the setting of operators on Hilbert spaces, we prove that
every quasinilpotent operator has a non-trivial closed invariant subspace
if and only if every pair of idempotents with a quasinilpotent commuta-
tor has a non-trivial common closed invariant subspace. We also present
a geometric characterization of invariant subspaces of idempotents and
classify operators that are essentially idempotent.
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1. Introduction

This note deals with idempotents, pairs of (not necessarily commuting) idem-
potents, essentially idempotent operators, and the issue of invariant subspaces
of bounded linear operators on Hilbert spaces. Recall that a bounded linear
operator T on a Hilbert spaceH (in short, T ∈ B(H)) is said to be idempotent
if

T 2 = T.
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If, in addition, T ∗ = T , then we say that T is an orthogonal projection.
Throughout this note, all Hilbert spaces are assumed to be complex and
separable.

There are many reasons to study idempotent operators. However, from
the present perspective, we remark that the invariant subspace problem has
an affirmative solution if and only if every pair of Hilbert space idempotents
has a common non-trivial closed invariant subspace (see Nordgren, Radjavi
and Rosenthal [11] and also see [12]). Recall that the celebrated invariant
subspace problem asks [14, 15]: Does every bounded operator on an infinite-
dimensional Hilbert space have a non-trivial closed invariant subspace?

From this point of view, it is also important to remark that there exist
triples of idempotents without a common non-trivial closed invariant sub-
space (see Davis [6]).

Not only the answer to the general invariant subspace (equivalently, the
reformulation of Nordgren, Radjavi and Rosenthal as stated above) problem is
unknown, but even for special classes of operators, like essentially self-adjoint
idempotents, finite-rank perturbations of normal operators, and quasinilpo-
tent operators, the problem is mysteriously unsettled. In fact, the study of
invariant subspaces of quasinilpotent operators is still indefinite (however,
see Apostol and Voiculescu [3], Foiaş and Pearcy [7], Herrero [10], and the
monograph [14]).

Along the lines of [11], Bernik and Radjavi [5] proved that every es-
sentially self-adjoint operator has a non-trivial closed invariant subspace if
and only if every pair of essentially self-adjoint idempotents has a common
non-trivial closed invariant subspace. Recall that T ∈ B(H) is essentially
self-adjoint if

T − T ∗ ∈ K(H),

where K(H) denotes the closed ideal of compact operators on H. Recall also
that an operator T ∈ B(H) is quasinilpotent if

σ(T ) = {0},

where σ(T ) denotes the spectrum of T . The quasinilpotent counterpart of
Bernik and Radjavi theorem is one of our main results (see Theorem 3.2):

Theorem 1.1. The following properties of operators on Hilbert spaces are
equivalent:

1. Every quasinilpotent operator has a non-trivial closed invariant sub-
space.

2. Every pair of idempotents with a quasinilpotent commutator has a non-
trivial common closed invariant subspace.

In the proof of the above theorem and most of the other results of this
paper, we make use of geometric representations of idempotent operators [2,
Theorem 2.6]. To state the result, we first set up some notation. Throughout
the paper, for each T ∈ B(H), we denote by R(T ) and N (T ) the range space
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and the null space of T , respectively. Also, we will use interchangeably the
identity

N (T ∗) = R(T )⊥,

and given a closed subspace S ⊆ H, we denote by PS the orthogonal pro-
jection onto S. Now we are ready to state the geometric representation of
idempotents (see Theorem 2.1): Let T ∈ B(H) be an idempotent. Then
PN (T∗)|N (T ) : N (T )→ N (T ∗) is invertible, and

T =

[
IR(T ) −PR(T )|N (T )(PN (T∗)|N (T ))

−1

0 0

]
,

on H = R(T )⊕N (T ∗). The present version is somewhat more rigorous than
that of [2, Theorem 2.6].

It is worthwhile to pause for a moment and recall invariant subspaces of
idempotents on Banach spaces. Let X be a Banach space, and let T ∈ B(X)
be an idempotent. Then invariant subspaces of T are all subspaces of X of
the form R u N , where R and N are closed subspaces of R(T ) and N (T ),
respectively (cf. [1, Proposition 3]). Evidently, if X is a Hilbert space, then
this representation is not (explicitly) compatible with the geometry of Hilbert
spaces. From this point of view, and to some extent, Theorem 4.1 takes care
of the geometry of ambient spaces.

Theorem 1.2. Let T ∈ B(H) be an idempotent, and let S be a closed sub-
space of H. Then S is invariant under T if and only if S is invariant under
(PN (T∗)|N (T ))

−1PN (T∗).

Now we turn to essentially idempotent operators. An operator T ∈
B(H) is essentially idempotent if T is idempotent modulo the compact op-
erators, that is

T 2 − T ∈ K(H).

In Theorem 5.1, we present a complete classification of essentially idempotent
operators:

Theorem 1.3. Let T ∈ B(H). Then T is essentially idempotent if and only
if one of the following holds:

1. T − I ∈ K(H).
2. T ∈ K(H).
3. T −S ∈ K(H) for some idempotent S ∈ B(H) such that both R(S) and
N (S∗) are infinite-dimensional.

We apply this to essentially commuting pairs of idempotents. A pair of
bounded linear operators (T1, T2) on H is called essentially commuting if

T1T2 − T2T1 ∈ K(H).

We have the following (see Corollary 5.3): Let (T1, T2) be a pair of essentially
commuting idempotents on H. Then one of the following holds:

1. T1 + T2 − I ∈ K(H).
2. T1 − T2 ∈ K(H).



4 Bala, Ghosh and Sarkar

3. There exists an idempotent S ∈ B(H) such that (T1+T2−I)S ∈ K(H).

For the reverse direction, (1) as well as (2) implies that (T1, T2) is es-
sentially commuting. However, condition (3) does not necessarily imply that
(T1, T2) is essentially commuting (see Example 5.4).

It is worthwhile to note that the commutator D = T1T2 − T2T1 plays
an important role in the problem of common invariant subspaces of a pair
of idempotents (T1, T2). Indeed, since D2 commutes with both T1 and T2, it
follows that T1 and T2 have a common invariant subspace whenever D2 has
a non-trivial hyperinvariant subspace.

The rest of this paper is divided into four sections. In Section 2, we
describe representations of idempotents. The main result here is due to Ando
[2], however, our presentation is different from the original one and in many
respects appropriately customized to our needs in the latter part of the paper.
Section 3 deals with invariant subspaces of quasinilpotent operators. Section
4 focuses on invariant subspaces of idempotents. Finally, Section 5 deals with
classifications and representations of essentially idempotent operators.

2. Representations of idempotents

In this section, we collect some of the results and tools which will be used in
later sections. The results are known, but our presentation is different, which
is also essential for the main contribution of this paper.

We begin with a result of Ando [2, Theorem 2.6] concerning represen-
tations of idempotents. Here we present a complete proof, which also takes
care of the alignment of subspaces and orthogonal projections (compare the
statement and the proof of [2, Theorem 2.6]). Recall that for T ∈ B(H), we
have N (T ∗) = R(T )⊥.

Theorem 2.1. Let T ∈ B(H) be an idempotent. Then PN (T∗)|N (T ) : N (T )→
N (T ∗) is invertible, and

T =

[
IR(T ) −PR(T )|N (T )(PN (T∗)|N (T ))

−1

0 0

]
on H = R(T )⊕N (T ∗).

Proof. First note that

R(PN (T∗)PN (T )) = N (T ∗). (2.1)

One inclusion follows from R(PN (T∗)PN (T )) ⊆ R(PN (T∗)) = N (T ∗). For the
other inclusion, let x ∈ N (T ∗) = R(I − PR(T )), and write x = (I − PR(T ))y
for some y ∈ H. Write y = y1 + y2, where y1 ∈ R(T ) and y2 ∈ N (T ). Then

x = (I − PR(T ))(y1 + y2) = (I − PR(T ))y2 = PN (T∗)y2 = PN (T∗)PN (T )y2,

proves (2.1). Next we show that PN (T∗)|N (T ) : N (T )→ N (T ∗) is invertible.
In view of (2.1), it is enough to prove that PN (T∗)|N (T ) is injective. Let

PN (T∗)x = 0,
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for some x ∈ N (T ). Then x = PR(T )x, that is, x ∈ R(T ), and hence x ∈
N (T ) ∩R(T ). Then x = 0 and hence PN (T∗)|N (T ) is invertible. Therefore

AT := (PN (T∗)|N (T ))
−1 : N (T ∗)→ N (T ),

is well defined. Now we turn to the block operator matrix representation
of T with respect to H = R(T ) ⊕ N (T ∗). Since T 2 = T , it follows that
TPR(T ) = PR(T ), which also implies that PN (T∗)T |N (T∗) = 0. In particular,
T |R(T ) = IR(T ) and hence

T =

[
IR(T ) PR(T )T |N (T∗)

0 0

]
∈ B(R(T )⊕N (T ∗)).

To complete the proof it suffices to prove that

PR(T )T |N (T∗) = −PR(T )|N (T )AT .

We have

PR(T )T (PN (T∗)PN (T )) = PR(T )(T − TPR(T ))PN (T )

= −PR(T )TPR(T )PN (T ),

as TPN (T ) = 0. Again, by TPR(T ) = PR(T ), we have

PR(T )T (PN (T∗)PN (T )) = −PR(T )PN (T )

= −PR(T )|N (T )AT (PN (T∗)|N (T ))PN (T )

= −PR(T )|N (T )AT (PN (T∗)PN (T )).

Then (2.1) implies that PR(T )T |N (T∗) = −PR(T )|N (T )AT and completes the
proof of the theorem. �

Particularly, we have the following similarity between an idempotent
and its corresponding projection.

Corollary 2.2. If T ∈ B(H) is an idempotent, then T = V PR(T )V
−1, where

V =

[
IR(T ) PR(T )|N (T )(PN (T∗)|N (T ))

−1

0 IN (T∗)

]
∈ B(R(T )⊕N (T ∗)).

Proof. The proof follows at once from the representations of PR(T ) and V −1

on H = R(T )⊕N (T ∗) as

PR(T ) =

[
IR(T ) 0

0 0

]
and

V −1 =

[
IR(T ) −PR(T )|N (T )(PN (T∗)|N (T ))

−1

0 IN (T∗)

]
,

respectively. �

In particular, we also have

LatT = {V S : S ∈ LatPR(T )},
where LatT denotes the lattice of invariant subspaces of T . We will return to
this theme in Section 4 (more specifically, see (4.1)).
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3. Idempotents with quasinilpotent commutators

In this section, we connect the problem of invariant subspaces of quasinilpo-
tent operators with the invariant subspaces of pairs of idempotents admitting
quasinilpotent commutators. Again, recall that T ∈ B(H) is quasinilpotent
if σ(T ) = {0}.

We recall the following classical fact about Riesz projections [8, Theorem
2.2, Page 10]. Let T ∈ B(H) and let σ ⊆ σ(T ) be an isolated part of σ(T )
(that is, both σ and σ(T ) \ σ are closed subsets of σ(T )). Then the Riesz
functional calculus

Pσ =
1

2πi

∫
γ

(λ− T )−1dλ,

is an idempotent, where γ is a contour separating σ and σ(T ) \ σ. Moreover,
R(Pσ) and N (Pσ) are invariant under T , and

σ(T |R(Pσ)) = σ and σ(T |N (Pσ)) = σ(T ) \ σ.
We also need the spectral behaviour of products of idempotents [4, Theorem
1].

Theorem 3.1. Let p and q be idempotents in a Banach algebra. Then

σ(pq) \ {0, 1} = {1− µ2 : µ ∈ σ(p− q) \ {0,±1}}.
Now we are ready for our invariant subspace theorem for quasinilpotent

operators. Throughout the proof, we will always assume that subspaces under
consideration are closed.

Theorem 3.2. Every quasinilpotent operator has a non-trivial invariant sub-
space if and only if every pair of idempotents with a quasinilpotent commu-
tator has a non-trivial common invariant subspace.

Proof. Suppose every quasinilpotent operator has a non-trivial invariant sub-
space. Fix a Hilbert space H and suppose T1 and T2 be two idempotents on
H. Set

D = T1T2 − T2T1,
and assume that σ(D) = {0}. Since T1 and T2 are idempotents, an easy
calculation shows that (cf. [1])

(T1 − T2)4 − (T1 − T2)2 = (T1T2 − T2T1)2. (3.1)

By the spectral mapping theorem

{λ4 − λ2 : λ ∈ σ(T1 − T2)} = {0},
and hence, σ(T1 − T2) ⊆ {0,±1}. Theorem 3.1 then implies that σ(T1T2) ⊆
{0, 1}. In view of Theorem 2.1, on H = R(T1)⊕N (T ∗1 ), write

T1 =

[
I XT1

0 0

]
,

where XT1 = −PR(T1)|N (T1)(PN (T∗1 )|N (T1))
−1, and set

T2 =

[
A B
C D

]
.
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Then

T1T2 =

[
A+XT1

C B +XT1
D

0 0

]
,

which implies σ(A+XT1
C) ⊆ σ(T1T2) ⊆ {0, 1}. We claim that A+XT1

C has
a non-trivial invariant subspace. Indeed, if σ(A + XT1

C) = {0, 1}, then the
discussion preceding the statement of this theorem implies that A + XT1C
has a non-trivial invariant subspace. Else, A + XT1C or A + XT1C − I is
quasinilpotent according to

σ(A+XT1
C) = {0} or {1}.

Our assumption guarantees that A+XT1C or A+XT1C−I has a non-trivial
invariant subspace. For the latter case, if a closed subspace S is invariant
under A + XT1

C − I, then it is easy to see that S is also invariant under
A + XT1

C. Consequently, A + XT1
C has a non-trivial invariant subspace,

which we denote by S. Note that {0} $ S $ R(T1).
We now proceed to check that T1 and T2 have a common non-trivial invariant
subspace. By Corollary 2.2, we have that PR(T1) = V −11 T1V1, where

V1 =

[
IR(T1) −XT1

0 IR(T1)⊥

]
∈ B(R(T1)⊕N (T ∗1 )).

Set

Q = V −11 T2V1,

and consider the subspace

M = S ⊕ PN (T∗1 )QS.

Since S $ R(T1), it follows that M is a proper subspace of H. We claim
that M is invariant under PR(T1) and Q. Observe that the above matrix
representation of T1T2 implies

A+XT1
C = PR(T1)T1T2|R(T1).

On the other hand, by using T1 = V1PR(T1)V
−1
1 and T2 = V1QV

−1
1 , we have

T1T2 = V1PR(T1)QV
−1
1 ,

which along with V1PR(T1) = PR(T1) implies that

PR(T1)T1T2|R(T1) = PR(T1)(V1PR(T1)QV
−1
1 )|R(T1) = PR(T1)Q|R(T1),

and hence

A+XT1C = PR(T1)Q|R(T1).

Since S $ R(T1), it follows that

PR(T1)M = PR(T1)S = S ⊆M,

that is, M is invariant under PR(T1). Next, we observe that

PR(T1)QS = PR(T1)Q|R(T1)S = (A+XT1
C)S ⊆ S.

Note that, by the definition of M, we have

(I − PR(T1))QS = PN (T∗1 )QS ⊆M,
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and hence the above inclusion implies that QS ⊆ M. This and the above
inclusion, again, imply that

QPN (T∗1 )QS = Q(I − PR(T1))QS
⊆ QS +QPR(T1)QS
⊆ QS +QS
⊆M.

Thus we have proved that QS ⊆ M and QPN (T∗1 )QS ⊆ M, which clearly
implies that M is invariant under Q. Therefore, M is a non-trivial common
invariant subspace for PR(T1) and Q, and consequently V1M is a non-trivial
common invariant subspace for T1 and T2.

We now turn to the converse. Assume that every pair of idempotents
with a quasinilpotent commutator has a non-trivial common invariant sub-
space. Let A ∈ B(H) be a quasinilpotent operator. Our aim is to prove that
A has a non-trivial invariant subspace. Following [11], define

T1 =

[
A A

I −A I −A

]
and T2 =

[
I 0
0 0

]
.

Then

T1T2 =

[
A 0

I −A 0

]
.

Since σ(T1T2) = σ(A) ∪ {0}, we have σ(T1T2) = {0}. By Theorem 3.1, we
know that

σ(T1 − T2) ⊆ {0,±1}.
We also know (see (3.1)) that

D2 = (T1T2 − T2T1)2 = (T1 − T2)4 − (T1 − T2)2.

By the spectral mapping theorem, we have σ(D) = {0}. Therefore, by as-
sumption, T1 and T2 have a common non-trivial invariant subspace, say
S $ H⊕H. Then

S = T2S u (I − T2)S.
The rest of the proof follows a similar line as in the proof of the theorem in
[11, page 66]. In the present case, also, the algebra generated by I, T1, and
T2 contains [

0 A
0 0

]
and

[
0 0

I −A 0

]
.

Now, we claim that T2S and (I − T2)S are proper subspaces of H. Without
loss of generality, we assume 0 is in the continuous spectrum of A, that is A
and A∗ are injective but R(A) is not closed (indeed, in other cases, A will
have a non-trivial invariant subspace). If T2S = H, then x ⊕ (I − A)y ∈ S
for all x, y ∈ H. Since (I − A) is invertible, it follows that S = H ⊕ H.
Similarly, if (I − T2)S = H, then Ax ⊕ y ∈ S for all x, y ∈ H, would imply

that S = H⊕H, as R(A) = H. Since S is non-trivial, either T2S or (I−T2)S
is nonzero. Hence either T2S or (I − T2)S is a non-trivial invariant subspace
for A. This completes the proof of the theorem. �
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In the above proof, the commutator T1T2 − T2T1 plays an important
role. As already pointed out in Section 1, commutators are in general useful
in the study of the joint invariant subspaces of pairs of idempotents [1]. In
Section 5, we also study representations of essentially commuting pairs of
idempotents.

4. Invariant subspaces of idempotents

As we have already pointed out in Section 1, the invariant subspaces of an
idempotent T acting on some Banach space X are all closed subspaces of
X of the form R u N , where R is a closed subspace of R(T ) and N is
a closed subspace of N (T ). However, in the setting of Hilbert spaces, this
representation does not in general carry all the geometry of the ambient
spaces. In the following, we examine how the geometry of the Hilbert space
method fits into the picture of invariant subspaces of idempotents.

Theorem 4.1. Let T ∈ B(H) be an idempotent, and let S be a closed sub-
space of H. Then S is invariant under T if and only if S is invariant under
(PN (T∗)|N (T ))

−1PN (T∗).

Proof. Let x ∈ S and write x = x1 ⊕ x2 ∈ R(T )⊕N (T ∗) = H. By Theorem
2.1, we have

Tx = x1 − PR(T )|N (T )ATx2 ∈ R(T ),

where AT = (PN (T∗)|N (T ))
−1 : N (T ∗) → N (T ). We decompose x2 further

as

x2 = u1 u u2 ∈ R(T )uN (T ).

Since

PR(T )u2 = PR(T )(x2 − u1) = −PR(T )u1 = −u1,
it follows that

PN (T∗)|N (T )u2 = PR(T )⊥u2 = u2 − PR(T )u2 = u2 + u1 = x2,

and hence ATx2 = (PN (T∗)|N (T ))
−1x2 = u2. Therefore

PR(T )|N (T )ATx2 = PR(T )u2 = PR(T )(x2 − u1) = −u1,

that is, PR(T )|N (T )ATx2 = −u1. Then

Tx = x1 + u1 = x1 + x2 − u2 = x− u2,

from which we deduce

(ATPN (T∗))x = u2 = x− Tx.

Now, if we assume that S is invariant under T , then u2 = x−Tx ∈ S implies
that S is invariant underATPR(T )⊥ . Conversely, suppose that (ATPN (T∗))S ⊆
S, and suppose x ∈ S. Then from the above equality, it follows that

Tx = x− (ATPN (T∗))x ∈ S,

that is, S is invariant under T , which completes the proof of the theorem. �
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In particular, if T ∈ B(H) is an idempotent, then

LatT = Lat((PN (T∗)|N (T ))
−1PN (T∗)). (4.1)

The following simple example illustrates the basic idea of the above
theorem.

Example 4.2. Let ϕ : D → D be a holomorphic self-map of the unit disc
D = {z ∈ C : |z| < 1}. We consider the composition operator Cϕ : H2(D)→
H2(D) defined by

Cϕf = f ◦ ϕ (f ∈ H2(D)),

where H2(D) denotes the Hardy space over D. It is easy to see that Cϕ is an
idempotent if and only if either ϕ is constant or ϕ is the identity map. If ϕ is
the identity map, then Cϕ is also the identity map and in this case, any closed
subspace of H2(D) is an invariant subspace for Cϕ. Next we consider the case
where ϕ is constant. Suppose ϕ ≡ α for some α ∈ D. Then, R(Cϕ) = C the
one-dimensional space of all constant functions in H2(D), and

N (Cϕ) = (z − α)H2(D).

In particular, N (C∗ϕ) = R(Cϕ)⊥ = zH2(D). For each f ∈ H2(D), it follows
that

PN (C∗ϕ)
f = (I − PR(Cϕ))f = f − f(0),

and hence, for each g ∈ H2(D) and a ∈ C, we have

PN (C∗ϕ)
PN (Cϕ)

(
(z − α)(a+ zg)

)
= z(a+ (z − α)g).

Therefore

(PN (C∗ϕ)
|N (Cϕ))

−1PN (C∗ϕ)
f = f − f(α) (f ∈ H2(D)),

from which it immediately follows that a closed subspace S ⊆ H2(D) is
invariant under Cϕ if and only if f − f(α) ∈ S for all f ∈ S. In particular,
span{1, z} is invariant under Cϕ but span{z} is not.

Let T ∈ B(H) be an idempotent, and let S ⊆ N (T ∗) be a closed
subspace. If S ⊆ N (T ), then TS = {0}, and hence S is invariant under T .
The converse is also true:

Corollary 4.3. Let T ∈ B(H) be an idempotent, and let S be a closed subspace
of N (T ∗). Then S is invariant under T if and only if S ⊆ N (T ).

Proof. Suppose S is invariant under T . Since S ⊆ N (T ∗), by Theorem 4.1,
we have

(PN (T∗)|N (T ))
−1S ⊆ S.

Moreover, since
R((PN (T∗)|N (T ))

−1) = N (T ),

for each x ∈ S, we have

y := (PN (T∗)|N (T ))
−1x ∈ N (T ) ∩ S ⊆ N (T ) ∩N (T ∗),

which implies
PN (T∗)x = x = (PN (T∗)|N (T ))y = y.
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Therefore x = y ∈ N (T )∩N (T ∗), which proves that S ⊆ N (T )∩N (T ∗) and
completes the proof of the corollary. �

In particular, if T ∈ B(H) is an idempotent, then a closed subspace
S ⊆ N (T ∗) is invariant under T if and only if T reduces S. Moreover, we
have the following:

Proposition 4.4. Let T ∈ B(H) be an idempotent, and let S ⊆ R(T ) be a
closed subspace. Then S reduces T if and only if S ⊆ R(T ) ∩R(T ∗).

Proof. Suppose S ⊆ R(T ) reduces T . By Theorem 2.1, on H = R(T ) ⊕
N (T ∗), we have

T ∗ =

[
IR(T ) 0
X∗T 0

]
,

where XT = −PR(T )|N (T )(PN (T∗)|N (T ))
−1. Fix x ∈ S. Since S is invariant

under T ∗, it follows that

X∗Tx = −((PN (T∗)|N (T ))
∗)−1PR(T )x = 0.

Since S ⊆ R(T ), we have

((PN (T∗)|N (T ))
∗)−1x = 0,

and hence PN (T )x = 0. Therefore, S ⊆ N (T )⊥, and hence S ⊆ R(T )∩R(T ∗).
The converse can be seen easily by the fact that R(T ) ∩ R(T ∗) is invariant
under both T and T ∗. �

5. Essentially idempotent operators

In this section, we classify essentially idempotent operators. Further, we pro-
vide some basic descriptions of essentially commuting pairs of idempotents.
Throughout, K(H) will denote the ideal of compact operators in B(H). The
Calkin algebra is the quotient space B(H)/K(H), the algebra of bounded
linear operators modulo the compacts. Also, we denote by π : B(H) →
B(H)/K(H) the canonical quotient map. The essential spectrum σe(T ) of
T ∈ B(H) is defined by σe(T ) = σ(π(T )). It is well known that

σe(T ) = {λ ∈ C : T − λIH not Fredholm}.
We begin with essentially idempotent operators. Recall that an operator

T ∈ B(H) is polynomially compact if there exists a polynomial p ∈ C[z] such
that p(T ) ∈ K(H). If p(T ) ∈ K(H) for p = z − z2, then we say that T is
essentially idempotent. Equivalently, an operator T ∈ B(H) is essentially
idempotent if

T − T 2 ∈ K(H).

The following classification of polynomially compact operators is due to Olsen
[13, Theorem 2.4]: Let T ∈ B(H), and suppose p(T ) ∈ K(H) for some p ∈
C[z]. Then there exists a compact operator K ∈ K(H) such that

p(T +K) = 0.

We are now ready for the classification of essentially idempotent operators.
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Theorem 5.1. Let T ∈ B(H). Then T is essentially idempotent if and only
if one of the following holds:

1. T − I ∈ K(H).
2. T ∈ K(H).
3. T −S ∈ K(H) for some idempotent S ∈ B(H) such that both R(S) and
N (S∗) are infinite-dimensional.

Proof. If T satisfies any of the conditions (1) through (3), then it is easy to
see that T is essentially idempotent. Thus we only need to prove the converse.
Let T 2 − T ∈ K(H). By Olsen, as above, there exists K ∈ K(H) such that

(T +K)2 − (T +K) = 0.

Let S := T + K, so that S2 = S. Assume that S is a projection, that is,
S = S∗. Then

T ∗T − TT ∗ = (S −K∗)(S −K)− (S −K)(S −K∗)
= S2 − S2 + compact,

.

Therefore T ∗T − TT ∗ ∈ K(H), which implies that π(T ∗T − TT ∗) = 0, that
is, π(T ) is normal. Also note that

σe(T ) = σe(S) ⊆ σ(S) ⊆ {0, 1}.

We have three cases to consider: Suppose σe(T ) = {0}. Then σ(π(T )) = {0}.
Hence by the spectral radius formula for normal elements of C∗-algebras, it
follows that π(T ) = 0 and consequently T ∈ K(H).
Assume now that σe(T ) = {1}. Then σ(π(T − I)) = {0}. Since π(T − I) is
normal in B(H)/K(H), from the argument above we must have that π(T −
I) = 0, and hence T − I ∈ K(H).
Finally, assume that σe(T ) = {0, 1}. Then σe(S) = {0, 1}. But S is a pro-
jection, and hence both N (S∗) and R(S) are infinite dimensional. Moreover,
S = T +K implies that T − S ∈ K(H).
Now we consider the case where S is not necessarily self-adjoint. By Corollary
2.2, we have that S = V PR(S)V

−1, where

V =

[
IR(S) PR(S)|N (S)(PN (S∗)|N (S))

−1

0 IN (S∗)

]
∈ B(R(S)⊕N (S∗)).

Since S = T +K1, there exists K̃ ∈ K(H) such that

PR(S) = V −1TV + K̃.

Then, we know from the above argument that one of the following holds:

1. V −1TV − I ∈ K(H),
2. V −1TV ∈ K(H), or
3. V −1TV−PR(S) ∈ K(H) and bothR(S) andN (S∗) are infinite-dimensional,

which is equivalent to saying that T −I ∈ K(H), or T ∈ K(H), or there exists
an idempotent S1 ∈ B(H) such that T − S1 ∈ K(H) and both R(S1) and
N (S∗1 ) are infinite-dimensional. This completes the proof of the theorem. �
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We apply the above theorem to representations of essentially commuting
pairs of idempotents. Recall that a pair of bounded linear operators (T1, T2)
on H is called essentially commuting if T1T2 − T2T1 ∈ K(H).

Corollary 5.2. Let (T1, T2) be a pair of essentially commuting idempotents on
H. Then one of the following holds:

1. T1T2, T2T1 ∈ K(H).
2. T1(I − T2) and T2(I − T1) are in K(H).
3. There exists an idempotent S ∈ B(H) such that T1T2S, T2T1S ∈ K(H).

Proof. Since T1 and T2 are idempotents, by (3.1), we know that

D2 = (T1 − T2)4 − (T1 − T2)2,

where D = T1T2 − T2T1. By assumption, D ∈ K(H), and hence R2 − R ∈
K(H), where

R := (T1 − T2)2.

We know by Theorem 5.1 that R− I or R or R− S belongs to K(H), where
S is an idempotent on H. Let us first assume that R− I ∈ K(H). Then

(T1 − T2)2 − I ∈ K(H),

or, equivalently
T1 + T2 − T1T2 − T2T1 − I ∈ K(H).

Since D ∈ K(H), we have necessarily

T1 + T2 − 2T1T2 − I ∈ K(H).

Multiplying by T1 on the left, we deduce that T1T2 ∈ K(H). Next, assume
that R ∈ K(H), that is

T1 + T2 − T1T2 − T2T1 ∈ K(H).

By substituting the compact operator D in this expression, we get

T1 + T2 − 2T1T2 ∈ K(H).

Again, multiplying by T1 on the left, we conclude that T1(I − T2) ∈ K(H).
Finally, if R − S ∈ K(H) for some idempotent S ∈ B(H), then T1 + T2 −
2T1T2 − S ∈ K(H). Multiplying by T1 on the left, we get T1 − T1T2 − T1S ∈
K(H). Using D ∈ K(H), it follows that

T1 − T2T1 − T1S ∈ K(H).

Now multiplying by T2 from the left, we have T2T1S ∈ K(H). �

Evidently, the first conclusion is covered by the third. Moreover, a closer
look at the proof reveals the following: R− I ∈ K(H) implies that

(T1 − T2)2 − I, T1T2, T2T1 ∈ K(H),

and R ∈ K(H) yields

(T1 − T2)2, T1(I − T2), T2(I − T1) ∈ K(H),

and finally, R− S ∈ K(H) implies

(T1 − T2)2 − S, T1T2S, T2T1S ∈ K(H),
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for some idempotent S ∈ B(H). The above three conditions yield the follow-
ing corollary:

Corollary 5.3. Let (T1, T2) be a pair of essentially commuting idempotents on
H. Then one of the following holds:

1. T1 + T2 − I ∈ K(H),
2. T1 − T2 ∈ K(H),
3. there exists an idempotent S ∈ B(H) such that (T1 + T2− I)S ∈ K(H).

The reverse directions of Corollaries 5.2 and 5.3 are not true in general.
For instance:

Example 5.4. Consider two noncompact operators A1 and A2 on H, and
define idempotents T1, T2 and S on H̃ := H⊕H⊕H by

T1 =

I 0 A1

0 I A2

0 0 0

 and T2 =

0 0 0
0 0 0
0 0 I

 ,
and

S =

I 0 0
0 0 0
0 0 0

 .
By a simple computation, it follows that

T1T2S = T2T1S = (T1 + T2 − I)S = 0 ∈ K(H̃).

In particular, we have T1T2S = T2T1S ∈ K(H̃), whereas, on the other hand,
we have

T1T2 − T2T1 =

0 0 A1

0 0 A2

0 0 0

 /∈ K(H̃).

Therefore, condition (3) in Corollary 5.2, as well as in Corollary 5.3, does not
imply that T1T2 − T2T1 is compact.

On the other extreme, condition (1) or (2) of Corollary 5.3 implies that
the commutator is essentially compact: Let (T1, T2) be a pair of idempotents
on H. Suppose

T1 + T2 − I ∈ K(H).

Then by multiplying T1+T2−I by T1 and T2 on the left, respectively, it follows
that T1T2, T2T1 ∈ K(H), which immediately implies that T1T2 − T2T1 ∈
K(H). Next, we assume that

T1 − T2 ∈ K(H).

Multiplying this on the left with T1 and T2, respectively, we have

T1 − T1T2, T2T1 − T2 ∈ K(H).

Then

T1T2 − T2T1 = −(T1 − T1T2)− (T2T1 − T2) + (T1 − T2) ∈ K(H),
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that is, T1T2 − T2T1 ∈ K(H). Therefore, in either case, the pair (T1, T2) is
essentially commuting.

Finally, in the context of difference of two idempotents and part (2) of
Corollary 5.3, we refer the reader to [9] and [16].
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